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1.0 INTRODUCTION

This report documents the results of research accomplished under Air
Force Office of Scientific Research contract F49620-83-C-0145, "The
Influence of Specific Factors Affecting Spall in Explosively Loaded Soil,"
during the period 1 August 1983 through 31 January 1985. Applied Research
Associates, Inc. has written two previous AFOSR reports on the subject of
spall in soil (References 1 and 2). Spall in explosively loaded soil is
caused by tensile failure, i.e., loss of particle to particle contact
resulting from dynamic tensile strain. A spalled soil particle undergoes
ballistic motion (-1g vertical acceleration) because the only significant
vertical force acting on it is the downward force of gravity. Spall most
frequently occurs at or near a free surface, but can also occur at a
considerable distance from a free surface if the proper dynamic tensile
strain conditions are present.

Reference 2 deals mainly with near surface soil spall due to airblast
loading, but also attempts to infer the shape and size of the spall zone due
to directly coupled energy from a near surface explosion, on the basis of
very limited field test measurements. At the request of the Civil
Engineering Research Division of the Air Force Weapons Laboratory
(AFWL/NTE), the current effort focused on spall in soil due to directly
coupled energy from a near surface explosion. The directly coupled spall
problem has two parts. The first part concerns the shape and size of the
spall zone due to directly coupled energy from a near surface explosion.

The second part concerns the effect of directly coupled spall on the ground
shock signal beyond the spall zone. The research reported herein focused on
the first part; the shape and size of the directly coupled spall zone.
Previous attempts to deduce the shape and size of the directly coupled spall
zone from test data (Reference 2) have yielded inconclusive results, because
of the lack of a sufficient number of vertical velocity measurements
extending to an adequate depth directly beneath and at small horizontal
ranges from the explosion. The second part of the directly coupled spall
problem (far field waveform effects) was not addressed. This was because
the computational mesh size required to adequately model the directly
coupled spall zone material behavior was so small that the resulting
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computational grid size was too small to yield ground shock waveforms at
large distances beyond the directly coupled spall zone. Reflections from
artificial but necessary computational grid boundaries were another reason
for not calculating far field ground shock waveforms. The grid boundaries
were far enough from the directly coupled spall zone not to have any effect

on it, but not far enough from it to permit far field ground shock waveform
calculations.

The specific factors affecting spall in soil due to directly coupled
energy from a near surface explosion studied in the current effort were:

1. Weapon yield

2. Soil hysterisis

3. Site layering )

Closed form solutions to two dimensional, intense stress wave
propagation problems in soil, of the kind considered here, are all but
impossible, and numerical methods must be used. The production calculations
were done on ARA's HP1000 computer rather than on the AFWL CRAY, to maintain
a reasonable schedule. This decision did impact the project technically,
because the version of the STEALTH computer code which resides on the ARA
HP1000 computer does not have a rezone/dezone option, due to limited storage
capacity. This meant the calculations had to be accomplished in such a way
as to avoid extreme distortion of the computational grid. This was
accomplished by defining the explosion source region at a late enough time
that it did not produce extreme distortion of the nearby soil grid, but at
some possible sacrifice of accuracy.

Section 2.1 of this report defines the directly coupled spall problem
in detail; Section 2.2 discusses the computational strategy employed; and
Section 2.3 presents and analyzes the results of the computer calculations.
Section 3 contains a summary of principal results and conclusions, and gives
recommendations for future research on the subject of soil spall.
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2.0 DISCUSSION
2.1 Problem Definition
Spall, in the sense of a tensile failure at the end of a bar subjected

to an intense compression wave, or at the ground surface from an underground
burst, or on the back side of a concrete wall impacted by fragments has long
been well known. These cases all fall within Rinehart's classic definition
of spall, i.e., "fracturing caused when a high intensity, transient stress
wave reflects from a free surface" (Reference 3). For a nomally incident
compression wave in elastic, single phase materials, fairly simple
relationships can be established to predict the initiation and location of
spall fractures. These relationships depend upon:

1. The resistance of the material to fracture

2. The magnitude and shape of incoming stress waves

The classic case of surface spall in rock directly above a contained
nuclear explosion occurred during the RANIER Event of Operation PLUMBBOB, a
1.7 Kt nuclear detonation 900 ft below the top of Ranier Masa in Area 12 of
the Nevada Test Site, on September 19, 1957 {References 4 and 5). It was
RANIER ground shock data which prompted the stili ongoing detailed study of
explosion-induced ground shock spall (Reference 6). Figure 2.1 shows the
surface vertical motion (recorded acceleration, and velocity obtained by
integrating the recorded acceleration) which occurred directly above the
RANIER detonation. Three distinct phases are evident in hoth the
acceleration and velocity curves:

1. an initial upward motion

2. a prolonged -1g free-~-fall, or dwell, in this case of about 380

milliseconds duration, and

3. a sharp upward impact, or "rejoin"
Perret postulated that the above curves describe the motion of a rock mass
given initial upward momentum by the upward-propagating compressive stress
wave generated by the weapon detonation, then separated from the rock mass
below by a distinct horizontal fracture, caused by the reflected tensile
wave propagating downward from the free surface. The separated mass then
undergoes "free" (ballistic) motion under the influence of gravity, until

impacting the rock mass below. Glasstone and Dolan (Reference 7) describe
spall from a shallow underground burst as follows:
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When a nuclear weapon is exploded under the ground, a sphere of
extremely hot, high-pressure gases, including vaporized weapon
residues and rock, is formed. This is the equivalent of the fireball
in an air or surface burst. The rapid expansion of the gas bubble
initiates a ground shock wave which travels in all directions away
from the burst point. When the upwardly directed shock (compression)

wave reaches the earth's surface, it is reflected back as a

rarefaction (or tension) wave. If the tension exceeds the tensile

strength of the surface material, the upper layers of the ground will
spall, i.e., split off into more-or-less horizontal layers. Then, as

a result of the momentum imparted by the incident shock wave, these

layers move upward at a speed which may be about 150 (or more) feet

per second.

Spall-type ground motion has by no means been restricted to contained
detonations in competent rock. Numerous ground shock records have been
obtained in soil, for both contained and near-surface detonations, in which
the vertical ground motion has exhibited all three of the characteristic
spall features shown in Figure 2.1. Nor are such motions seen only near the
ground surface. There are, however, significant differences in waveform
detail between spall in soil and spall in rock.

Analyses of single and multiburst ground motion data from the MISERS
BLUFF Phases I and II high explosive experiments showed that spall phenomena
due to pore air expansion were strongly evident in the near surface ground
motions immediately following local airblast effects. Measured ground
motions from the PRE-MULTIBURST Phases I and II and PRE-HYBRID GUST high
explosive experiments also contain similar spall features. The presence of
spall probably accounts for much of the failure of empirical superposition
procedures to correctly predict the frequency content and, in some cases,
the peak time domain amplitude and time of occurrence of the large upward
motion observed in ground motion records from multiburst explosions
(References 8 and 9). Table 2.1 summarizes available experimental spall
data from near surface U.S. chemical and nuclear explosions (Reference 2).
The quantities R, and zg in Table 2.1 are defined in Figure 2.2 from
Reference 2.

Spall is one of the less well understood and more troublesome

mechanisms affecting explosive ground motion analysis and prediction. It is
an important consideration for the geophysical community in attempting to
differentiate between an explosion and an earthquake, or to describe an
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. explosion based on the characteristics of measured ground motion. It is
.; equally as important for the weapon effects community in attempting to
predict Targe yield effects from small yield tests, because late time spall
behavior is gravity dominated, but gravity is usually neglected in explosive
effects scaling. Uncertainties associated with spall arise in connection
with nuclear detonation detection/discrimination, ground motion frequency
analysis, yield scaling, HE/NE equivalence determination, and the use of
superposition to calculate the resultant ground motion due to both airblast
and directly transmitted ground shock, as well as due to multiple explosions.
For a near surface burst, the problem is much more complex than for
classic one-dimensional spall. Near surface explosions generate various
types of waves which are reflected and refracted in layered geologies, and
cause complex wave interactions at the ground surface. In addition, both

4
a ‘s v 'u‘

YA

".
3
P

positive and negative local air pressures can augment or retard the spall
process. Finally, geologic materials (particularly soils) are particulate,
multiphase, highly nonlinear, inelastic, nonhomogeneous, and often
anisotropic, particularly under the influence of tensile stress.
The definition of spall used here is a generalization of Rinehart's,

. recognizing that spall in soil is simply loss of particle contact (tensile
|| failure) under dynamic loading, followed by sudden contact reestablishment

(impact rejoin). Soil spall manifests itself as a prolonged -1g free fall,
. followed by a sharp upward impact. Auld (Reference 2) used the following

criteria to determine from measured ground shock records whether spall had
[ | occurred:

R‘-".' '

1, -1g (-0.5 to -2.0g) vertical acceleration dwell (>5 ms), which is
ﬁj identifiable directly on a vertical acceleration record, or as the
. slope of a vertical velocity record

- 2. identifiable impulsive rejoin signal on both the vertical and
horizontal acceleration records
3. rejoin amplitude (>0.05 m/s) observed on the vertical velocity
record
- These criteria are similar to those utilized by previous investigators, but
with numerical values specified. They were used to assemble Table 2.1.
?j Auld, et al. (Reference 10) suggested that the zone of spalled

material surrounding a near-surface explosion can be considered to consist
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_3 of two parts: a bowl-shaped volume of material, designated the “coupled

,g spall region"; and a shallow extension of the basic spalled volume,

-~ designated the "negative airblast wing region." Figure 2.2 illustrates o
N these two zones as they might occur from a typical near-surface detonation.

2 Any of the possible spall mechanisms or a combination of these mechanisms X
f: may be responsible for the spall observed in the so called coupled spall .
region, e.g., direct waves, head waves, reflected waves, or surface waves.

The problem addressed herein is to define the shape and extent of the

spall zone due to directly coupled energy from a near surface explosion in

soil, as a function of explosion yield, soil hysteresis, and site layering.
. The approach was to perform eight two-dimensional, axially symmetric -
jS calculations, using the Lagrangian, explicit, dynamic finite difference :
- computer code, STEALTH (Reference 11). The input to seven of the eight
- calculations was an initial kinetic energy source region distribution near
:_ the surface of a soil halfspace, plus a nuclear surface afrblast pressure
,i. distribution. The input to the eighth calculation was an HE surface
"~ airblast pressure distribution only, which is the conventional
j: representation of a near surface HE explosion. The results of the finite
e

difference calculations are presented in the form of velocity-time waveforms
and -1g dwell contours. Spall features, when present, have been identified
from the velocity waveforms. The shape and extent of the directly coupled
spall zone has been defined from the dwell contours. The identifiable
properties of the directly coupled spall zone are then related to the
loading, material and site property parameters. An important feature of the
calculated results is that the directly coupled spall zone turned out to be
pear shaped,

»
L5

2.2 Computational Strategy
Eight STEALTH calculations were performed to define the shape and

- extent of the spall zone due to directly coupled energy from a near surface
o explosion in soil, as a function of explosion yield, soil hysteresis, and
o site Tayering. These calculations are summarized in Table 2.2. All eight
calculations were two dimensional and axially symmetric, and employed a
Lagrangian spatial grid and explicit time integration. i

Attempts to fnitiate the calculations by depositing internal energy in >
a few of the rectangular zones surrounding the origin at time zero failed
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TABLE 2.2
- SUMMARY OF EIGHT DIRECTLY COUPLED SPALL CALCULATIONS

n nger Yield, MT Equation of State Layers Surface Loading
o 1 1.0 non-hysteretic 1 Speicher-Brode
“ 2 2.0 non-hysteretic 1 Speicher-Brode
!! 3 0.5 non-hysteretic 1 Speicher-Brode
a 4 1.0 hysteretic 1 Speicher-Brode

5 2.0 hysteretic 1 Speicher-Brode

6 0.5 hysteretic 1 Speicher-Brode

7 1.0 hysteretic 2 Speicher-Brode
3; 8 1.0* non-hysteretic 1 AMCLOAD (HE)

*The conventional representation of a surface HE explosion involves
ll airblast only. Therefore no initial kinetic energy source region was used

in this calculation.
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due to large grid distortion, which stopped the calculation. Rezoning was -3
s not possible with the version of STEALTH installed on the ARA HP1000
computer, due to limited storage capacity. In addition, the early time

s a® B

N directly coupled spall zone for these calculations was also somewhat
E rectangular, which seemed suspicious. Consequently, the velocity field at ‘g
N 1 millisecond from a CRT 2 Kt alluvium cratering calculation, using the
arbitrary Lagrangian/Eulerian code CRALE (Reference 12) was spatially and 3
: temporally yield cube root scaled and used to initiate Runs 1 through 7 in N
: Table 2.2. The CRT calculation (designated R1) had been initiated using the X
S state of the art Benchmark 3 (BM3) nuclear source developed by s3, »
Figure 2.3a shows the velocity field in the CRT source region at
E 1 millisecond. To increase the calculational time step fn CRALE, CRT
g performed a 2 to 1 dezoning of the entire grid at 1 millisecond. Figure
:5 2.3b shows the velocity field in the CRT source region immediately after é;
- dezoning. The yield cube root scaled finite difference grid used in the ARA
i STEALTH calculations was superimposed on this modified CRALE grid. Figure ~
5 2.4 shows the yield cube root scaled velocity field used to start the ARA 1 -
N Mt STEALTH calculations. The 1 Mt STEALTH grid was about the same size as <
- the dezoned CRALE grid in the horizontal direction, and about 4/3 as large -—
A in the vertical direction. However, the STEALTH three point time domain -
: central differencing scheme has a higher order truncation accuracy than does E:
the CRALE two point time domain forward differencing scheme, and the higher )
order accuracy of STEALTH should have offset, at least in part, any ;;

detrimental effects the CRALE dezoning had on stress attenuation or spall
zone shape and size. For a detailed discussion of the accuracy of the CRT 2
Kt alluvium cratering calculation, see Reference 13.
A plot of peak vertical velocity along the center axis for Runs 3, 4, -
and 5 is shown in Figure 2.5. This figure shows that the peak vertical R
velocity on axis varied with yield cube root scaled depth in a manner
similar to that of empirical data for material with a comparable wavespeed
analyzed by Cooper in Reference 14. Reference 13 shows that the rate of
calculated peak stress attenuation is affected by source region waveform

details, especially rise time, as well as by geometric and material
behavior, and by numerical methods and zoning. The fact that the calculated
peak stress attenuation data from the current STEALTH spall calculation, for -

.
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LA

E ’ both non-hysteretic and hysteretic material, compare favorably with Cooper's
i’ attenuation bounds from Reference 14 is cause to infer the reasonableness of
CRT's R1 source region velocity field used to start the STEALTH spall
; . calculations.
! g} The finite difference grid for all eight runs consisted of 1600 nodes,
arranged so that there were 39 zones in both the X and Y directions. A
!’ constant scaled zone size of 3 meters/Mt1/3 was used in both the X and Y

directions for the first 15 meters of the grid. An initial zone size of

3 meters/Mtl/3 and a geometric progression of 1.09 were used to define the

remainder of the grid. The finite difference grid and the locations of the
velocity waveform target points are shown in Figure 2.6. The distance from
the origin corresponding to selected grid lines is given below.

(M e arn &

L COMPUTATIONAL GRID LINE LOCATIONS
1, d z, mmtl/3
1 0
2 3
3 6
i 4 5
X 5 12
- 6 15
7 18
. 10 28.72
' 15 54. 06
e 20 93.06
25 153.06
L. 30 245,37
35 387.41
- 40 605. 95
- I = range
~ J = depth

To simulate the nuclear surface airblast loading along the top
boundary of the grid for Runs 1 through 7, a Speicher-Brode airblast

=
e T T e R T TV SUL TS Y T e T P T P S S Ve Y YR VoL IR PN
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function (Reference 15) was used. Because all the calculations were run

with axial symmetry, the Speicher-Brode airblast function was centered on
the axis of symmetry and allowed to propagate outward to the edge of the

grid.

To use STEALTH to study spall a soil stress-strain relation with low
tensile stiffness was needed. Although spall is by nature a discontinuous
phenomenon, it was convenient if not absolutely necessary to use a
stress-strain relation which maintains continuity, i.e. which does not
permit the material to fracture. This is because if two initially
coincident material points separate they probably will not rejoin, but
instead impact a zone boundary or another point. Describing this point or
zone boundary impact process is beyond the capability of the STEALTH code.
Consequently, displacements were assumed to be single valued, strains were
related to displacement gradients, and stresses were expressed as functions
of strains. The stress-strain equations are given in Appendix A,

The method used to determine if a particular node was in a state of
spall was to check the vertical acceleration. If it was between -0.5 and
-2.0 g's, the node was defined to be in a spalled state. This criterion was
used to be consistent with the previously stated empirical spall criterion.
The total and the longest continuous spall times were recorded for each
node. Contours of longest continuous spall (dwell) time were plotted to
define the shape and extent of the spall zone.

The first three calculations were run to determine the effect of
explosion yield on the characteristics of the directly coupled spall zone.
In a1l three calculations the axis of symmetry corresponded to the Y-axis,
the radial and bottom boundaries were defined to be rigid, and the surface
was defined as a pressure boundary. The Speicher-Brode airblast function
was used to compute the surface airblast pressure as a function of time.
The initial node spacing was determined from the 3 meter spacing used in the
1 Mt case, using cube root of yield scaling. The spacing in the 2.0 Mt
calculation was 3.8 meters, and for the 0.5 Mt case the spacing was 2.4
meters. The magnitude of the velocity field used to define the initial
kinetic energy was not changed; only the spatial placement of the velocity
vectors was affected. Time was also scaled. The reason for using such a
small yield range (0.5-2.0 Mt) was that gravity was kept constant,
independent of yield.




It was therefore anticipated that yield cube root scaling would not strictly
apply, and the purpose of the relatively small yield variation was to see
what yield scaling law did apply. As it turned out, the yield scaling law
which applies for the yield employed is approximately cube root, and limited
computer resources prevented widening the yield range.

The fourth, fifth and sixth calculations were completed using the same
initial velocity field, node spacing, yields, and boundary conditions as the
first three calculations. The only difference bewteen these and the first
three calculations was the material model used. In these calculations the
original material model was modified to allow for hysteresis.

The seventh calculation was performed to see what influence a material
layer interface would have on the directly coupled spall zone. A second
layer was introduced at a depth of 223.60 meters (J = 29). The hysteretic
material model was used in both layers. In the upper layer the material
model was the same as the model used in Runs 4, 5, and 6. The second layer
consisted of the same material model, except with coefficients four times as
large as those in the first layer. The result of this change was to
increase the material wave speed from 2000 meters/second in the first layer
to 4000 meters/second in the second later. The material density and
Poisson's ratio were kept the same for both layers.

The final calculation was a 1 Mt HE, 1 layer calculation using the
simple non-hysteretic material model. The boundary conditions and node
spacing were the same as in the previous 1 Mt calculations. The surface
airblast loading pressure was computed using the CRALE HE subroutine AMCLOAD
(an empirical fit to MIDDLE GUST III airblast records) (Reference 16). The
purpose of this run was to see if the nature of spall due to a near surface
HE explosion differs substantially from that due to a near surface nuclear
explosion of the same yield. Since the conventional representation of a
surface HE explosion involves airblast only, the scaled CRT Rl initial
velocity vector field was not used in this calculaton.

2.3 Calculational Results

The criterion used to determine whether a node was fn a state of spall
was whether the vertical acceleration was between -0.5 g's and 2.0 g's. As
a means of graphically displaying the length of time each node was in spall, v

e N P S
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a letter of the alphabet was used to represent each 0.010 second dwell
interval as follows:
Letter Dwell Time, Sec

“hlank® less than 0.010

A 0.010 to 0.020
0.020 to 0.030
0.030 to 0.040
0.040 to 0.050
0.050 to 0.060
0.060 to 0.070
0.070 to 0.080
0.080 to 0.090
0.090 to 0.100

J greater than 0.100

These identifiers are plotted at the node locations, and the 10 msec dwell
contour drawn by eve. The region enclosed by the 10 msec dwell contour is
defined as the directly coupled spall zone.

Vertical velocity waveforms were also examined along a variety of
radials from the origin. In the velocity waveforms a -1g acceleration is
represented by a linear section in the waveform having a slope of -9.81
m/secz.

The results from all eight calculations are presented in Appendix B.
Note that Y is positive downward in all plots in Appendix B. Because of
noise resulting from large zone aspect ratios, only results from within the
first 30 I and J grid Tines were examined. Appendix B is divided into four
parts. The results for the non-hysteretic material model are presented on
pages B-2 through B-15. The results for the hysteretic material model and
one material layer are presented on pages B-16 through B-29. A comparison
of the results for the one megaton, non-hysteretic material model with one
layer (Run 1), the one megaton, hysteretic material model with one layer
(Run 4), and the the one megaton, hysteretic material model with two layers
(Run 7), is presented on pages B-30 through BR-42. Pages B-43 and B-44 shows
selected results from the one megaton HE (AMCLOAD loading) calculation
(Run 8),
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The objective of these calculations was to evaluate the influence of

-
M 1) yield, 2) hysteresis, and 3) layering on directly coupled spall in a

“ numerical calculation. The influence of each of these variables on the

: shape and size of the spall zone due to directly coupled energy from a near
i surface explosion in soil is addressed below.

“u

1. Yield--To examine the effect yield has on the directly coupled
spall zone a comparison of the results from the one megaton, two
megaton, and half megaton calculations was made. Figure 2.7 shows
the scaled directly coupled spall zones resulting from
calculations involving the non-hysteretic material model (Runs
1-3). The scaled directly coupled spall zones in non-hysteretic
material for all three yields are consistent in size, but pear
shaped, rather than bowl shaped. These pear shaped zones are
similar in shape to that of pressure bulbs (contours of maximum
principal stress) due to surface pressure applied over a circular
area on an elastic half space. Since a near surface explosion
also exerts intense pressure over a more or less circular area,
the pear shaped configuration of the directly coupled spall zones

. appears reasonable, even though it departs from the bowl shaped

N configuration characteristic of explosive craters. The maximum

directly coupled spall depth, which occurs on axis, is between 210

and 225 m/(Mt)1/3, Except for a 1ip which roughly coincides

with the crater region, the directly coupled spall zone in non-

R

hysteretic material lies within a 60 degree cone with its apex at
the origin. (The cone directrices make a 30 degree angle with the
grid centerline.) Figure 2.8 shows the scaled directly coupled
spall zones resulting from calculations involving the hysteretic
material model (Runs 4-6). The directly coupled spall zones in
hysteretic material, for all three yields, are also consistent in
size, and pear shaped. The maximum directly coupled spall depth,
which occurs on axis, is between 165 and 190 m/(Mt)1/3. There

is no directly coupled spall zone 1ip, as there was for the

f non-hysteretic materfal, and the directly coupled spall zone in
hysteretic material 1ies within a 25 degree cone with its apex at
the origin.
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2. Hysteresis--The presence of hysteresis dramatically and
consistently reduces the size of the directly coupled spall zone,
as Figures 2.7 and 2.8 show. This suggests that a principal
mechanism of spall due to directly coupled energy from a near
surface explosion is tensile failure caused by late time release
of stored strain energy.

3. Layering--Figure 2.9 shows that the second, stiffer layer at
223.60 meter depth had no effect on the depth of directly coupled
spall on axis, in comparison with that for the hysteretic case
with only one layer, but did widen the angle of the cone within
which directly coupled spall occurred from 25 degrees to about 90

g -

Ehe RS

0
« v .
L X

degrees.

o The data on pages B-43 and B-44 show spall due to HE airblast only.
K Eé The zone in which directly coupled spall occurred in Runs 1 through 7 shows
no spall in Run 8, indicating that the principal spall agent in Runs 1
through 7 was directly coupled energy, as intended. Since directly coupled
spall does occur for near surface HE explosions, however, the lack of
- directly coupled spall in Run 8 also indicates the need for a better

theoretical representation of a near surface HE explosion.
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3.0  SUMMARY AND CONCLUSIONS

The purpose of this investigation was to evaluate the influence of
explosion yield, soil hysteresis, and site layering on the shape and size of
cihe spall zone due to directly coupled energy from a near surface explosion
in soil. The investigation was done numerically on Applied Research

ssociates' HP1000 computer, using the Lagrangian, explicit dynamic finite
difference computer code, STEALTH. The most important result is the
ohservation that the computed directly coupled spall zone is pear shaped.
The directly coupled spall zone size scales consistently with the cube root
of v1he yield in the neighborhood of one megaton yield, and is dramatically
reduced by hysteresis. The presence of a hard layer in one calculation had
no effect on the maximum directly coupled spall depth on axis but did
increase the apex angle of the vertical cone within which directly coupled
spall occurred.

The calculations demonstrated conclusively that spall can be studied
numcrically using the STEALTH computer code. A more extensive numerical
stuagy should now be accomplished on a large mainframe computer, in which
cratering and spall are investigated simultaneously. The purpose of such a
stuuy would be to evaluate the influence of early time source region
details, and computational procedural details such as zone size, rezoning,
and time step. When the shape and size of the spall zone due to directly
coupled energy from a near surface explosion in soil has been well defined,
the same source can then be used with confidence to study spall effects on
ground shock waveforms well beyond the directly coupled spall zone.
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. APPENDIX A
- STRESS-STRAIN RELATIONS




Non-Hysteretic Stress-Strain Relations

A simple tension-sensitive stress-strain relation in which one bulk
modulus is used for compression and another smaller bulk modulus is used in
tension was used as the material model. A constant material density and
Poisson's ratio were used in both compression and tension,

A 2
= ‘/’* /‘
Qas 5)(/4,"-
b -_azx/o’/i.

lﬂs r0°

2
/
— ﬁ 0 778?,—
A
o = 1760 KG/M3 (1]
p = ay + by’ (u > 0) [2]
= 2 (u < 0) (3]
P - B = av2by (u > 0) (4]
=% (u < 0) (5]
e HL,? (61 &




v = :} (73
' The Shear Modulus is
T 26 = -3-"{-}-;2—") (8]

The Shear Failure surface is shown below. Shear failure surface
violations are corrected at constant p.

3,

.

K Hysteretic Stress-Strain Relations
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p = 1760 KG/M3 [9]
42 Hmax
P =au * byl [10]
“max = M [11]
Pmax = P (12]
“min = Ymax ~ __z_b____pmax (13]
a*cbupax
Pmin = 0 [14]
“min < ® < Mpax aMd Ppin = 0
P = (& *2bupay ) (u-upip) [15]
; “min < 4 < Mpax and Ppip < 0
P = Prin * clu-umin) * d(u-unin)? [16]
where
d < (a*2bug ) tpax=#min! = (Pmax~Pmin) [17]
(uo o= )2
“max~“min
2 (Ppax=Pmin
¢ = — TN _ (ae2by ) (18]
Umax~"min .
0 <u<upiy
a N
P = Ppip * glw-umin) [19]
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= .
} min = 4 [20]
. Pmin=p [21]
g
: 3 <O

. a
AN P = Ppin * B¥ [22]
: 1; The shear modulus is

3K(1-
2G = (1"2\)) [8]

Do The shear failure surface is shown below. Shear failure surface violations
i e are corrected at constant p.
w L\'.
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Proof of Equatfons [17] and (18]

The basic equation is
r P-Pnin = Clu-upin) * dlu-umin)? [23]
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and the two conditions detemmining the constants ¢ and d are

Pmax-Pmin = Clumax-¢min) * dumax-umin)2 [24] -
c ¢+ Zd(l-lmax-umi") =at Zbumax [25] -
-
If we set A
Pmax-Pmin =P [26] -
p “max-min = X (28]
[ -
. Then Equations [24] and [25] can be written in the form
g Xc + X2 = P (29] H
< c+2Xd =S £30]
or =
ctXd =g [31] .
C+2Xd =S [32] -
Subtracting Equatfon [31] from Equation ([32] yields -
Xd =S - § =% x
*
or
L [33] e
X
and Equation [32] then yields ;:
' 2($X-P) _ 2P )
C=S-2d=S - = -S [34]
- X =X =
The slopes of the various branches of the p-u curve are as follows:
~3

virgin compression:
B =a* 2bup,, (35]

straight line unloading-reloading:
B =a+ 2byy,, [35] -
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